Hydraulic model as a main tool for water distribution system management

Igor Dundović *HIDROMODEL - consulting and services, Croatia*

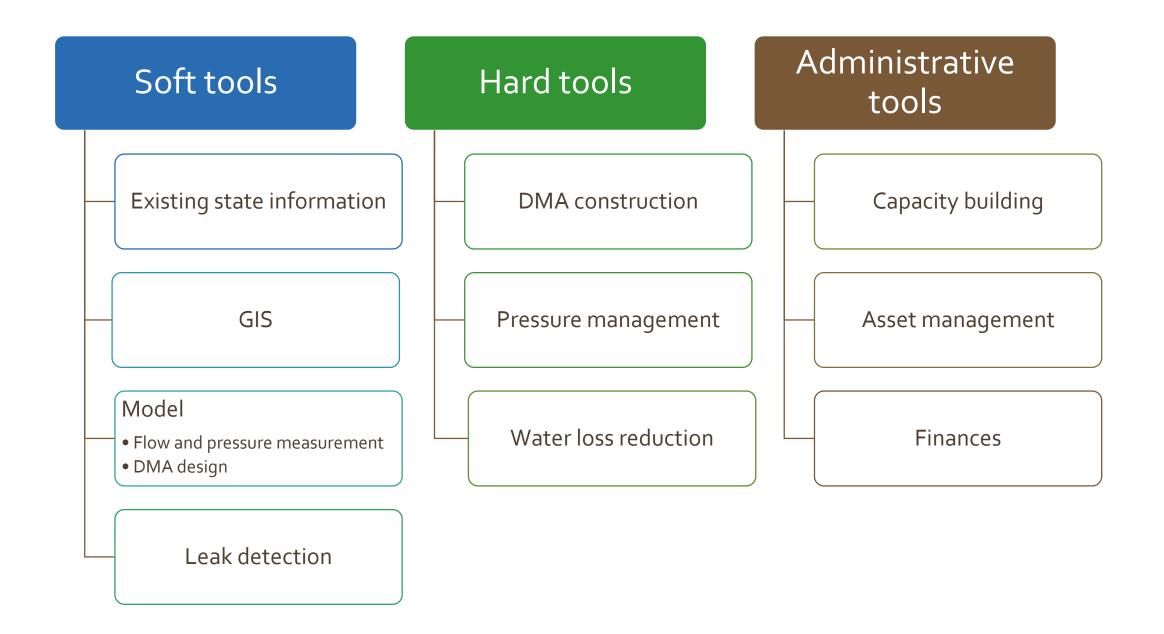
Tomislav Vitovski AquaLeak – water loss detection

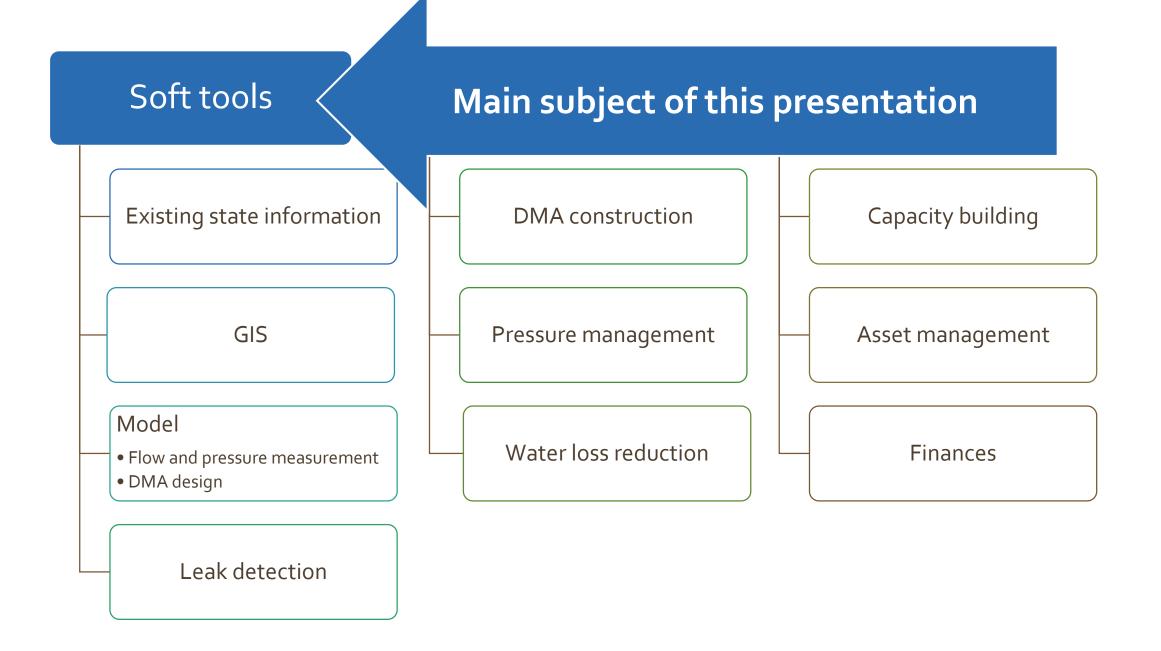
Caribbean Regional Conference Water Loss 2023

21-23 March 2023 Port of Spain, Trinidad and Tobago

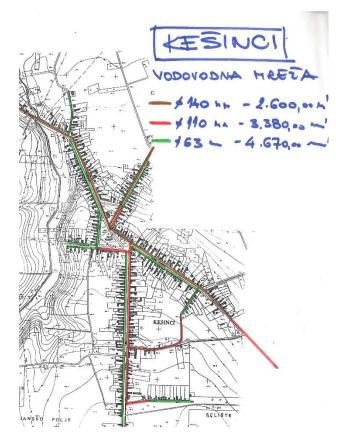
Content

QUESTIONS


- What tools are needed for WDS management?
- How to start?
- Why is hydraulic model important?


ANSWERS – CASE STUDIES

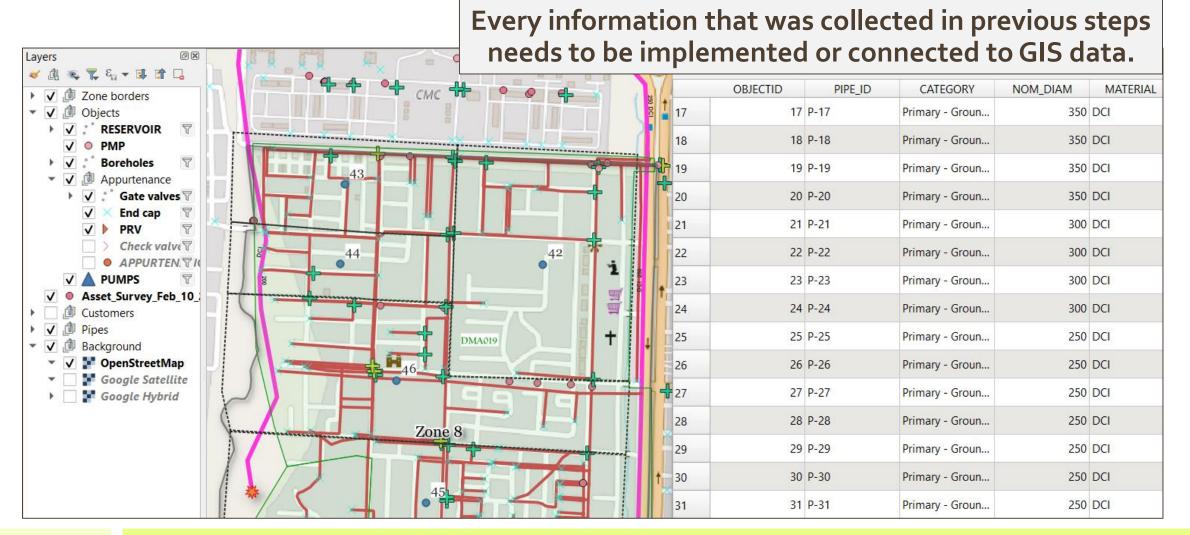
- Soft measures as main starting point
- Hydraulic model as an operational and decision making tool
- Conclusion \rightarrow Costs



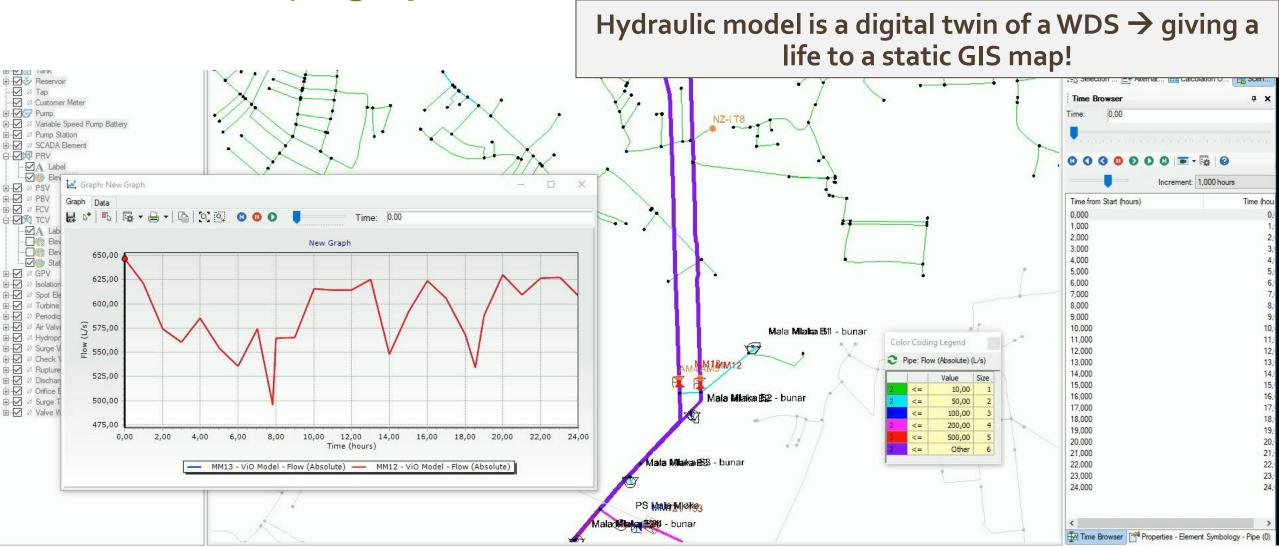
How to start?

Existing state due-diligence \rightarrow combining all the existing knowledge with intense site investigation

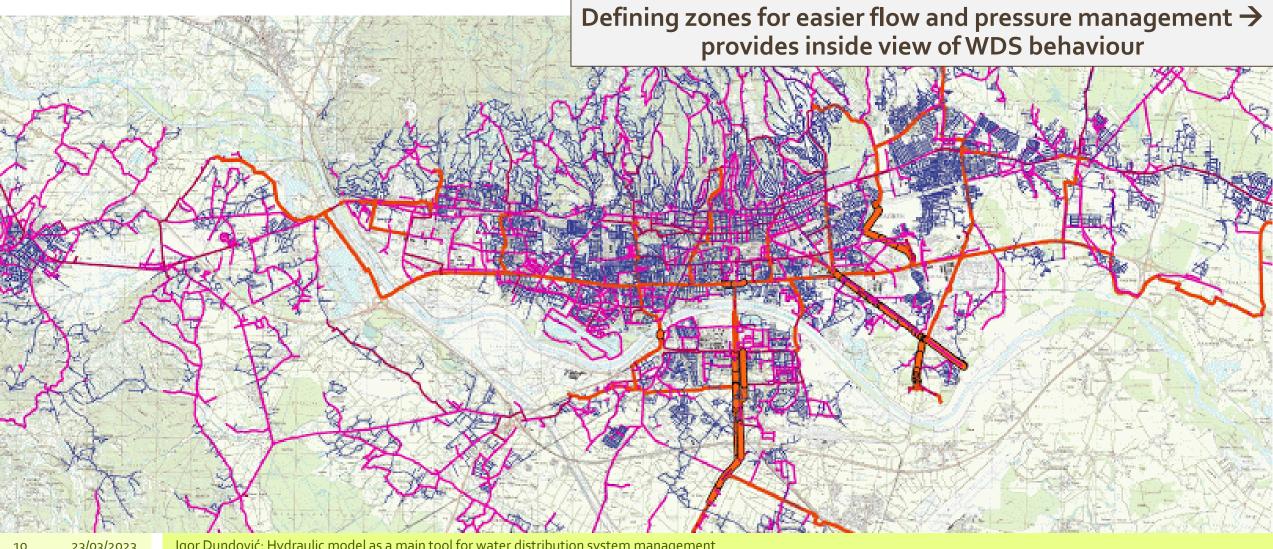
Existing drawings: hand drawings, CAD, GIS, "by memory" \rightarrow EVERYTHING!!!



Site investigation \rightarrow object characteristics, pipe layout confirmation, data sheets, existing documents, ...



Creating **GIS**: "single source of truth"


23/03/2023 Igor Dundović: Hydraulic model as a main tool for water distribution system management

Developing hydraulic model

23/03/2023 Igor Dundović: Hydraulic model as a main tool for water distribution system management

DMA (district metering area) design


Igor Dundović: Hydraulic model as a main tool for water distribution system management 23/03/2023

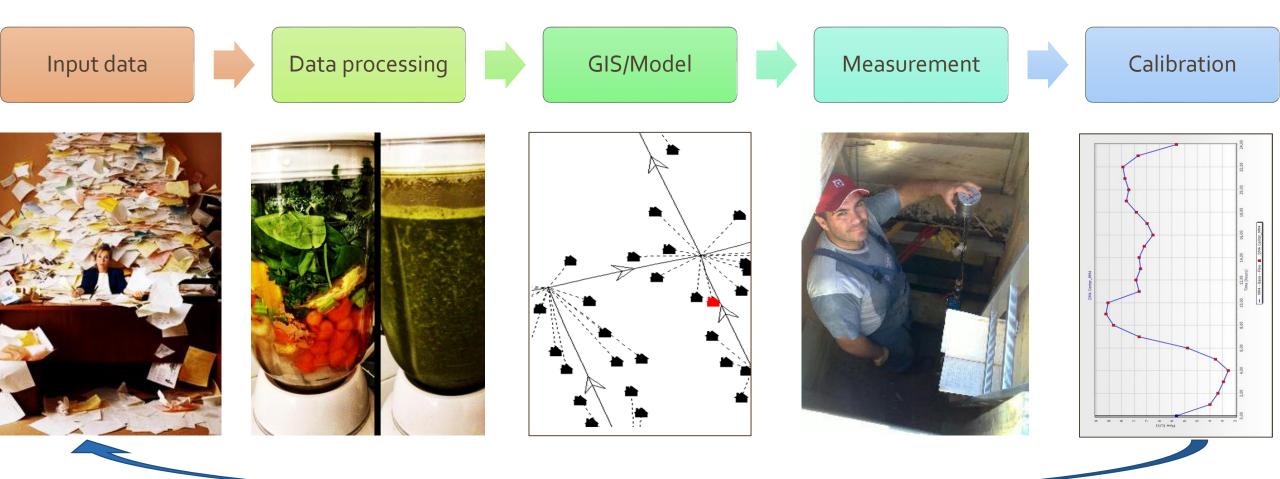
Measurement campaign → flow, pressure and water level measurement for model calibration

Flow measurement using ultrasonic flow meter

Pressure measurement

Leak detection → step test, acoustic devices, corelation methods, etc.

Step test preparation


Site inspection

Why is hydraulic model important?

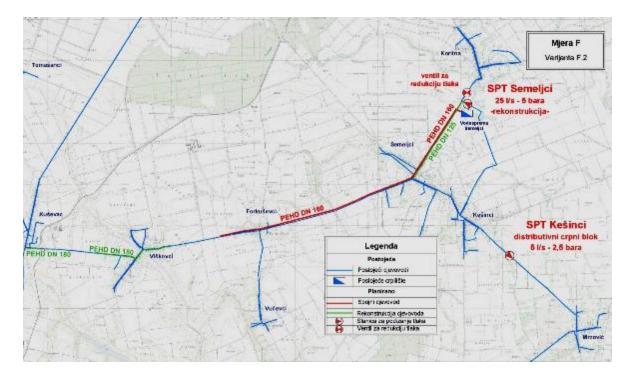
Hydraulic model combines all information (GIS, object data, etc.) and all the measurements for better decision making and confident distribution system management

Case studies of problem solving and decision making using hydraulic model

Case 1: Pipe burst

- Measurement campaign discovered 280.000 m3/y leak on 16 km main pipe
- Pressure analyses suggested pipe burst as main leak cause
- Using pressure profile inside hydraulic modelling software, pipe burst location was estimated and confirmed on site using leak detection equipment

Case 2: WDS network extension – different solution


- Network extension was suggested by Water company and Designer did hydraulic calculation giving pipe diameter and cost estimate (first variant)
- Hydraulic modeler used model of entire network and offered second variant solution by lowering pipe diameter and implementing water tower as peak demand element
- Second variant lowered construction cost by 18%, operation cost by 14% and nett present value by 31%

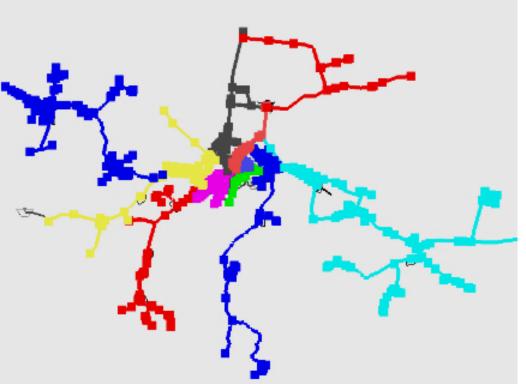
Variant	CAPEX	OPEX	NPV (4%)
Vı	3.132.100	25.917	3.284.512
V2	2.261.100	22.447	2.283.597
Difference	18%	14%	31%

Case 3: Water quality issue – different solution

- Old water production facility stopped working properly and big reconstruction was suggested (first variant)
- Using hydraulic model and measured water balance, second variant was proposed by connecting subjected sub-system to main system with good water quality and sufficient distribution capacities
- Second variant for 15% increase in construction cost lowered operation cost by 23% and nett present value by 43%

Variant	CAPEX	OPEX	NPV (4%)	
Vı	5.624.975	721.843	24.753.411	
V2	6.464.488	553.441	14.220.302	
Difference	-15%	23%	43%	

Case 4: Pressure management for electricity savings and water loss reduction


- Pumps were pumping from deep wells (50 100 m) directly to consumers
- Using hydraulic model, low pump efficiency was detected
- Suggest solution consist of updating pump variable frequency drive and separation of pumping system from distribution system
- Result 1: savings of 400.000 kWh/y of electricity
- Result 2: Water loss reduction of 250.000 m3/y
- Investment return period: 4 years

			Summary Pumps Tanks Variable Speed Pump Batteries Turbine					
1971 🚨 🔅	Scenario:	Base 🗸			Pumps	Turbines	Net	
		Energy (k	Wh)	4.398,5	(N/A)	4.398,5		
S Base			Energy Cost (kn)		3.738,72	(N/A)	3.738,72	
Pump/Turbine Usage Deng Time Details Details Deng Times		Storage Cost(kn)		3.738,72	(N/A)	3.738,72		
			Daily Energy Cost (kn)		4.163,66	(N/A)	4, 163, 66	
- OP PS Luketinka			Volume (r	m3)	9,494,87	(N/A)	9,494,87	
PS Zalužnica		nica	Unit Energy Use (kWh/m ³)		0,4633	(N/A)	(N/A)	
SPT Brloška Dubrava SPT Brloška Dubrava SPS Gerovo Selo SPS Marinić SPS Grezina SPT Pokana	ška Dubrava	Unit Energy	gy Cost (kn/ML)	438,5629	(N/A)	(N/A)		
	Contraction of the second s	Peak Ener	gy Demand Cost (k	5.390,49	(N/A)	5.390,49		
		Carbon Er	mission (kg/day)	48,98	(N/A)	48,98		
	12241	Run Dura	tion (hours)	24,000	(N/A)	24,000		
PS Ličko Leśće PS Kutarevo Storage Pesk Energy Demands		Leśće evo						

19 23/03/2023 Igor Dundović: Hydraulic model as a main tool for water distribution system management

Case 5: Implementing DMA and PMA for better decision making

- Hydraulic model was designed to return exact pressure/loss corelation by implementing emitter coefficient
- Real time pressure management and loss reduction with direct results obtaining
- This way, decision making process is done using model simulation before any construction work or equipment installation

Pressure Zone	Zone	Net Volume (m²)	Volume Demanded (m²)	Maximum Elevation (m)	Minimum Elevation (m)	Maximum Hydraulic Grade (n)	Minimum Hychraulic Grade (m)	Maximum Pressure (bars)	Minimum Pressure (bars)
Pressure Zone - 1	<none></none>	158,9	158,9	265,00	129,31	291,33	174,18	10,7	-0,
Pressure Zone - 2	<none></none>	- 228,4	- 228,4	235,00	114,47	255,44	158,46	7,8	2,
Pressure Zone - 3	<none></none>	739,6	739,6	155,21	130,00	181,13	178,71	5,0	2/
Pressure Zone - 4	<none></none>	553,8	553,8	165,00	90,81	194,58	118,41	5,7	2,
Pressure Zone - 5	<none></none>	303,5	303,5	135,06	119,22	161,19	157,59	4,1	2,
Pressure Zone - 6	<none></none>	343,5	343,5	165,00	128,81	195,98	177,26	5,1	1,
Pressure Zone - 7	<none></none>	244,7	244,7	135,13	103,27	148,37	146,31	4,4	1,
Pressure Zone - 8	<none></none>	-2.811,5	256,0	131,96	106,50	161,92	106,99	5,4	0,
Pressure Zone - 9	<none></none>	282,7	282,7	190,00	118,76	204,48	148,08	5,6	1,
Pressure Zone - 10	<none></none>	127,1	127,1	103,79	97,92	132,97	132,45	3,4	2,
Pressure Zone - 11	<none></none>	272,4	272,4	199,07	114,22	244,46	152,72	10,2	2,

Conclusion

Recommendations

FOR CONSULTANTS and ENGINEERS

- For generating calibrated hydraulic model, DMA design and detail measurement campaign should be conducted
- Active communication with Water company employees is critical for system functionality recognition

FOR WATER COMPANIES and INVESTORS

- Check every step of project → if necessary, out-source technical supervision
- Ask for results and explanation of every illogicality or anomaly → that is why calibrated hydraulic model is used for
- Soft measures are your permanent ownership → do not allow questions or unfinished work to remain
- Educate yourself, build your team and use everything every day → you paid for it!

Conclusion

STARTING POINT

- Increasing of water distribution system management starts with soft activities
- Good project preparation results in investment and operating cost decrease
- Implementing GIS and hydraulic model enables better decision making for water loss management, pressure management, water balancing, energy consumption optimization, water billing, network extension, ...
- Active system management with precise prediction of consequences

COSTS

- Soft measures value is around 10% of total price of a water loss programme
- Soft measures for 1.500 km of pipe network cost less than 5 km pipe reconstruction

Thank you for your attention and may the water force be with you!

HÅDROMODEL

CONJULTING & JERVICEJ

Igor Dundović, Mag. CEn. CE; Univ. Spec. Independent Water Specialist | NRW Advisor E-mail: igor@hidromodel.com Mobile: +385 98 269 700

24 23/03/2023 Igor Dundović: Hydraulic model as a main tool for water distribution system management